llama-server & OpenAI endpoint
Deploying via llama-server with an OpenAI compatible endpoint
We are doing to deploy Devstral-2 - see Devstral 2 for more details on the model.
Obtain the latest llama.cpp on GitHub here. You can follow the build instructions below as well. Change -DGGML_CUDA=ON to -DGGML_CUDA=OFF if you don't have a GPU or just want CPU inference.
apt-get update
apt-get install pciutils build-essential cmake curl libcurl4-openssl-dev -y
git clone https://github.com/ggml-org/llama.cpp
cmake llama.cpp -B llama.cpp/build \
-DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON
cmake --build llama.cpp/build --config Release -j --clean-first --target llama-cli llama-mtmd-cli llama-server llama-gguf-split
cp llama.cpp/build/bin/llama-* llama.cppFirst download Devstral 2:
# !pip install huggingface_hub hf_transfer
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "unsloth/Devstral-2-123B-Instruct-2512-GGUF",
local_dir = "Devstral-2-123B-Instruct-2512-GGUF",
allow_patterns = ["*UD-Q2_K_XL*", "*mmproj-F16*"],
)To deploy Devstral 2 for production, we use llama-server In a new terminal say via tmux, deploy the model via:
When you run the above, you will get:

Then in a new terminal, after doing pip install openai, do:
Which will simply print 4. You can go back to the llama-server screen and you might see some statistics which might be interesting:

For arguments like using speculative decoding, see https://github.com/ggml-org/llama.cpp/blob/master/tools/server/README.md
Last updated
Was this helpful?

